Install MNN on Raspberry Pi 4 - Q-engineering
Go to content
Install MNN software on Raspberry Pi 4

Install MNN deep learning framework on a Raspberry Pi 4.


This page guides you through the installation of Alibaba's MNN framework on a Raspberry Pi 4. The given C ++ code examples are written in the Code::Blocks IDE for the Raspberry Pi 4. We only guide you through the basics, so in the end, you can build your application. For more information about the MNN library, see Because the installation on a 32-bits operating system is identical to the one on a 64-bits OS, there is no need for sperate instructions. Perhaps unnecessarily, but the installation is the C ++ version. It is not suitable for Python.
The MNN framework has a few dependencies. It requires protobuf. OpenCV is used for building the C++ examples and is not needed for MNN.
# check for updates
$ sudo apt-get update
$ sudo apt-get upgrade
# install dependencies
$ sudo apt-get install cmake wget
$ sudo apt-get install libprotobuf-dev protobuf-compiler


With the dependencies installed, the library and converter tools can be built.
# download MNN
$ wget -O
$ unzip
$ mv MNN-master mnn
$ rm
# common preparation
$ cd mnn
$ ./schema/
# install MNN
$ mkdir build
$ cd build
# generate build script
$ cmake -DCMAKE_BUILD_TYPE=Release \
The MNN building routines are capable of detecting the type of operating system used, as can be seen in the output.


Time to build the library and install it in the appropriate folders.
# build MNN (± 20 min)
$ make -j4
$ sudo make install

If everything went well, you have the following folders on your Raspberry Pi 4.




Please note also the folder with the examples.


If you like to download some example deep learning models, use the commands below.
# download some models
$ cd ~/mnn
$ ./tools/script/
Deep learning software for Raspberry Pi
Deep learning examples for Raspberry Pi
Install 64 OS
Install 32 OS
Raspberry and alt
Raspberry Pi 4
Jetson Nano
Back to content